On I-statistically ϕ-convergence
نویسندگان
چکیده
In this paper we investigate the notion of I-statistical ϕ-convergence and introduce IS-ϕ limit points cluster real number sequence also studied some its basic properties.
منابع مشابه
On I-statistical Convergence
In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.
متن کاملMod-φ Convergence
Using Fourier analysis, we study local limit theorems in weak-convergence problems. Among many applications, we discuss random matrix theory, some probabilistic models in number theory, the winding number of complex brownian motion and the classical situation of the central limit theorem, and a conjecture concerning the distribution of values of the Riemann zeta function on the critical line.
متن کاملOn $I$-statistical and $I$-lacunary statistical convergence of order $alpha$
In this paper, following a very recent and new approach, we further generalize recently introduced summability methods, namely, $I$-statistical convergence and $I$-lacunary statistical convergence (which extend the important summability methods, statistical convergence and lacunary statistical convergence using ideals of $mathbb{N}$) and introduce the notions of $I$-statis...
متن کاملON COMMON VALUES OF φ(n) AND σ(m), I
We show, conditional on a uniform version of the prime k-tuples conjecture, that there are x/(log x) numbers not exceeding x common to the ranges of φ and σ. Here φ is Euler’s totient function and σ is the sum-of-divisors function.
متن کاملConvergence of series of dependent φ-subgaussian random variables
The almost sure convergence of weighted sums of φ-subgaussian m-acceptable random variables is investigated. As corollaries, the main results are applied to the case of negatively dependent and m-dependent subgaussian random variables. Finally, an application to random Fourier series is presented. © 2007 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones
سال: 2021
ISSN: ['0716-0917', '0717-6279']
DOI: https://doi.org/10.22199/issn.0717-6279-4036